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We develop an event-based model to specify
formally the behavior (the extermal view) and
the structure (the internal view) of distributed
systems. Both control-related and data-related
properties of distributed systems are specified
using two fundamental relationships amcng
events; the "happens before" relation, repre-
senting time order:; and the "enabling” relation,
reprasenting causality. No assumption about the
existence of a global clock is made in the
specifications. .

The corrsctness of a dasign can be proved
before implementaticn by checking the consis-
tency between the behavior specification and the
structure specification of a system. Important
properties of concurrent systems such as "mutual
exclusion,” "concurrency,” and other "safety"
and "liveness™ properties can be specified and
verified.

1. Introduction

Computations of distributed systems are ex-
tremely Jdifficult tc specify and verify using
traditional techniques becausa the systems are
inherently concurrent, asynchronous and nondeter-~
ministic. Furthermore, computing nodes in a
distributed system may be highly independent of
each other, and the entire system may lack an
accurate global clock.

In this paper, we develop an event-based model
to specify formally the behavior (ths external
view) and the structure (the internal view) of
distributed systems. Both control-related and
data-zrelated properties of digtributed systems are
specified using two fundamental relationships
among events; the "happens before" relation, repre-
senting time order; and the "enabling” relation,
representing causality. No assumpticn about the
existence of a global clock is made in the speci-
fications.

The correctness of & design can be proved
before implemeantation by checking the consistency
between the behavior specification and structure
specification of a system. Important properties
of concurrent systems such as "mutual exclusion,”
*concurrency,” and other "safety” and “liveness”
properties can be specified and verified.

Moreover, since the specification technigue
defines the orthogonal properties of a system sep-
arately, each of tham can then be verified inde-
pendently. Thus, the proof technique avoids the
exponential state-explosion problem found in state-
machine specification techniques.

2. Conceptual Modelling

A distributed system may be described from
two different points of view. From a designer's
viewpoint, it consists of local processes inter-
acting with users and communicating among them-
selves via the service of communication medium.
Each local process can be described by the oper-
ations responding to user's commands, messages
from other processes or internal clocks. The
structure is depicted in Figure 1.

From a user's viewpoint, a distributed system
is a black box, or a shared server with only the
interfaces visible to him, as shown in Figure 2.
In this case, except for performance issues, thers
is no difference in functionality between a dis-
tributed system and a centralized one. The cnly
things interesting are what kind of messaces or
events may happen in the interfaces ancd what are
the relationships among the messages oz the events.
We call such kind of interface description of
a system, its behavior specification.

3. The Event Model

'#e consider the behavior of a system to be
a set of computation histories characterized by
"events.” The model in which our specification is
based upon, therefore, consists of events and
their relationships.

3.1 Event

An event is an instantaneous, atomic state
transition in the computation history of a system.
Examples of events are the sending, the receiving,
and the processing of messages. By "instantaneous”
we mean an event takes zero-time to happen. By
“atomic” we mesan an event happens completely or
not at all.

3.2 Event Relationships
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3.2.1 Time Ordering: ~“->°

In describing the time ordering among events,
a system-wide reliable clock is usually assumed
to order totally the events in a centralized ays-
tem. Unfortunately, the assumption of the exis-
tence of such a global clock is too strong in
describing the computation of a distributed sys-
tem which is inherently concurrent, asynchronous
and nondeterministic. Theoretically speaking, in
some extreme case, it is impossible to order two
events totally when they happen in two geograph-
cally separated places. Practically speaking,
implamenting such a global clock is quite expen-
sive and unnecessary in a distributed system having
highly autonomous computing nodes. We give up the
global clock assumption and come out with a partial
ordering relation-the “preceding” relation de-
noted by “~>“, to represent the time concept
(GRE77, LAM78].

The interpretation of “->” as a time ordering
means that, if el and e2 are events in a system
and el->e2, then el happens before e2 by any
measure of time. To understand the meaning of
“=»°, let us look into Pigure 3. Each vertical
line in Pigure 3 represents the computation his-
tory of a (seq ial) "pr ." By a "process"
we Dean, an autonomous computing ncde having its
own "local® clock; different procasses may uss
different time scales. The dots denote events
and the dottad line between events denote mes-
sages. The relation “-»° has the following prop-
erties:

(1) If el and e2 are events in the same process,
and el comes before e2, then el->e2 (e.g.
pl->p2 in Figure 13):

(2) If el is the sending event of a message by one
process and e2 is the receiving event of the
message by another process, then by the law
of ‘causality’, ei->e2 (e.g. pl->q2 in Figure
3);

(3) (Transitivity property) If el->e2 and e2->el
then el->e? (e.9. pl->q3 in Figure 3);

(4) (Irzreflexivity property) For every event e,
~(e=>e);

(S) (Antisywmstry property) If el->e2 than
= (e2~>el)

3.2.2 Concurrency

Two distinct events, say el and e2, are con-
current if. ~(el->e2) and ~(e2->el) and denoted by
el//e2. In Pigure 3, for example, although pl->q2
and ql->p2, thers is no way to tell whether pl or
ql comes first; they may be concurrent.

3.2.3 Enabling Relation =

An important class of properties in communi-
cation systems is the guaranteed gervice of message

transmission. Such kind of properties can be spec-
ified by the introduction of the enabling relation,

denoted by "=»>" between events. Two events, say
a and b, satisfy the relation as>p if the exist-
ence of event a will cause the .ccurrence of event
b in the future. The relation s> has the fol-
lowing properties:

(1) Events are enabled in the future,
if a = b then a =->b

(2) Anti-symmetry property,
if a => b then ~(b => a)

(3) Irreflexivity property,
“(a = a)

(4) Transitivity property,
if a»> b and b => ¢ then a => ¢

Properties (2) and (3) can be derivad frem (1) and
the properties of relation -> , while (1) and (4)
are essential axioms for the relation => .

3.2.4 system, Environment, Their Interfaces
and Events

The event space in the computation history is
categorized into three distinct domains: the sys-
tem, the environment and the interfacial ports.

A system interacts with its environmant by
exchanging messages through unidirectional
interfaces called ports, as depicted in Figure 4.
An inport (outport) directs messages from the en~
vironment (system) to the system (environment).

Every port defines sequencas of interfacial
events. Every event in a port history is uniquely
identified by an integer number, called ordinal
aumber. Thus, a port history is a total ordering
of events, although the events in system or in
environment are only a partial ordering.

4. The Langquage EBS

Based on the concepts above, we developed a
language called EBS (Event Based Specification
Language) to specify the behavior of distributed
systems. Instead of presenting the formal syntax
of the language, we use examples to show up its
expressive power.

4.2 le 1: Reliable Transmission Systems

A reliable transmission system (RT) is one
through which messages are transmitted without
error, loss, duplication or reordering from an
inport to an outport (see Figure 5). Although most
physical communication media are unreliable that
may lose, duplicate or reorder messages, almost
all dasigners provide communication protocols (e.g.
Altarnate Bit Protocol) to convert them into logi-
cally relisble ones for the ease of application
programs that build on the top of the communi-
cation systams.
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The property that the:e is no loss of nessages
during the transmission means that eVery message
sent from the inport A will eventually be trans-
nitted to the outport B. This can be specified as
£ollows:

(* RTI1(A,B) (1] : No loss of messages*®)
Va-adbep
a=> b;

Similarly, the property that messages at B are not
generated internally or externally but are enabled
Ly massages at A, is specified as follows:

{* RT12(A,B): no self-existing messagas*)
¥ beB ¢ ar A
am> b;

(* RT13(A,B): no internally or externally
Generatsd messages
*)
V b* B, s+ SYS, e+ ENV £2)
(s =>b #> } a+ A am>g=>b) *
(@ w>b #> } a+ A aw>am>d)

The resexved word SYS (ENV) refers to the set of
s:3ram (environment) events. The property that
there is no duplication of nessages iz specified
as follows:
(* RT14(A,B): no duplication of messages *)
¥ a+ A, bl,b2+ B
am>bl “* awd>b2 #> blab2

which says that every sending event can only en-
able a unique receiving event. The property that
the order of messages is preserved after trans-
nission is specified as follows:

(* RT15(A,B): no out of order messages *)
¥ al,a2e A, bl,b2« B
al=>bl * a2w=>h2
# (al-> a2 *“ bl-> b2) v
(als a2 ~ bly b2) v
(a2«> al * b2-> bl)

which says that if al is sent before a2 then it
will also be received before a2. The property
that the contents of messages are preserved after
the transmission is specified as follows:

(* RT21(A,B): preservation of massage
contants*)
VarA, be B
as>b #> a.nsgwb.msqg

(1] %e will use RT1l to name this property after-
wards for convenience.

{2] Tha order of operator precedence in the lan-
guage is as follows: (1) uniary operators;
¥ (for all), 4 (thers exists) and * (logical

not); (2) relational operators: <+ (belongs to),

® (equivalent to), & (equals te); (3)
logical operators: v (logical or), “ (logical
and),; (4) # (logical implication).

which says that the receiving and sending event
carry the same message contents.

These are about the weakest properties that
a reliable transmission system should have. A
very good features of this kind of orthogonal speci-~
fication ia that a specification can be sasily
adapted to different applications. For example,
if we want to specify the behavior of a communi-
cation system which not only transmits messages
reliably but alsc performs code conversions
between computer systems communicating with each
other using different codes (e.g., ASCII and
EBCDIC), we need only change RTZ1 to

{# TR21(A,B): message transformer®)
¥V arA, b B
a=> b #> b.msag= F(a.msg)

vhere F is the code conversion function, and leave
others unchanged. This can also be seen from the
specification of the following system.

4.2 Example 2: Unreliable Tra: smission System (UT)

An unreliable transmission system is the one
through which messages may be lost, duplicated
or reordered, but thers is a ncn-zero probability
of message transmission and no erronecus messages.
Most physical communication media belong to this
class,

The property that “hers is a nou-zero proba-
bility of message transmission can be specified
as

(*"NZ(A,B) : a nonzero prcbability of success-
ful message transmission.
*)
¥V ai+e A
(V¥ aj* A aj.msg= ai.:nsg
#> 3 ak+ A aj-> ak ° ak.msg= ai.msg)
#> (3 a* A, b= B
a=> b" a.msge ai.msg * ai-> a)

which means that if a group of messages having the
same contents are sent unboundedly then at least
one of them will reach B.

The unreliable tronsmission system is speci-~
fied as follows:

System UT (A : inport;
B : outport);

Behavior

(* A nongero probability of successful
message transmission.
*)
M(Al‘) ]

(* No self-existing messages *)
RT12(A, B);




(* No internally or externally generated
messages *)
RT13(A, B);

{(* RT1l, RT14 and RT15 are discarded
which means that the system nay
lose, duplicate or reorder messages.

*)

(*No erronecus messages *)
RT21(A, 3);

End behavior

End system.

S. Structure Specification snd Verification

In a top-down hierarchical design, the service
that a digtributed system provides is described
first by the behavior specification. Then the
specification is decomposed, according to a
design rationale, into a set of sub-systems
communicating via the service of connection links.
We call such kind of design (internal) descrip-
tion of a systam, its structure specification.
Once we get both behavior and structure speci-
fications, the corractness of a design can ke
proved by checking the consistency between these
two specifications.

S.1 System Constructs

A subsystem is a building block of the whole
system. The computation of a subsystem is de-
scribed by a behavior specification, which can be
further decomposed into a structure specification.
In this way, our specification technique sup-
ports the hierarchical design methodology.

» . i connects an outport of a subsystem to
an inport of another subsystem. When two ports
are linked, they are merged into a single port.
The event semantics of a link are that ports are
identical in the cutport and the inport being
linked together. By identical we mean two events
are just the same; it is impossible to distinguish
between them.

¥ote that & link is differest from a reliable
transmission system in that the latter introduces
finite wessage delay as in a prysical cable con-
nection while the formar transmits mmesages reli-
ably and without any delay (i.s., instantanecusly).
Nots also that two ports cannot be linked unless
they have exactly the same asesage types.

$.2 J: AT TWO!

In packet-switched network, a packet of
message, instead of sent directly from the source
node to the destination node using a long-haul
tzansmission iine, is passed via soma intermediate
nodes betwesn the source node and the destination
node. A messaqge is sent reliably from the source
node to thée intermediate node and then sent reli-
ably from the intermediats node to the destination
node. Thus, the structurs of the commumication

system can be considered as consists of a set of
reliable transmission sub-systems ccnnecting in
series, which, as a whole, provides the service
of a reliable transmission system for the users
of this packet- switched network. We call such a
serial connection of two or more subsystems, a
tandem (see Figure 6) network.

5.2.1 Verification of the Tandem Network

Since we are using the same mathematically
sound notations (i.e., Cfirst-order logic and par-
tial ordering relations), the verification process
can be carried out as proving thecrems.

Theorem 1. A tandem connection of two reliable
systams behaves as a single reliable cne.

Proof
The no loss property can be proved as follows:

(1) For all p in PA there is a q in PB
such that p=> q (Since RT1l of SA)
(2) For all r in PC there is an s in PD
such that r=> s (since RT1l of SB)
(3) Let g= r (since PB and PC are connected)
(4) p=> 8 (since => is transitive;

Other properties can be proved similarly, indepen-
dent of one another.

Although the proofs of the theorems are
carried cut in a scmehow informal way, they may
actually be formalized. See [CHES82] for details
of the verification.

S.3 Example 4: An Alternate-Bit Protocol

An Alternate-Bit Protocol is intended to pro-
vide a reliable message transfer over an unreliable
transmission medium {rom a fixed sender or a fixed
receiver. The service provided by this protocol
is, thus, nothirg more than that of a reliable
transmission system.

The underlying communication medium is an
unreliable one, which may lose, duplicats or
reorder messages: however, there is a non-zero
probability of ful ge transmission.

$.3.1 Structure Specification of An Alternate-
Bit Protocol

To guarantse a message sent from one end to
be received finally at the othar end, we should
takes advantrge of the property, "non-zero proba-
bility of message transmission," of the unreliable
medium. The {dea is that the Sender keep on send-
ing the same massage unboundedly until it gets
back an acknowledgement from the Receiver: and
the Receiver acknowledges all messages received.
To avoid duplication of messages, a serial
(integer) number, as a unique i@, is attached to
each message sent by the Sender and the Receiver
accepts 2e8saqgas only if their serial numbers have
never appeared before. To avoid reordering mes-
sages, ve sequentialize the sending of the nesseage

— .
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by requiring that the Sender cannotv send a second
message until the previous one has been acknowl-
edged.

The key ideas can be specified formally in EBS
as follows:

(* Alternate-Bit Protocol *)

Sender:

{* Guaranteed message transmission: keep
on sending the same message
unboundedly until get back an acknowl-
edgement. *)

¥ ip + IP
(3 ds+ DS ip=> ds) *
({} are AR ar.msgno= ord(ip)) v
(V d1+ DS ip=> 4l
#> # d2+ DS ip=s> d2°d1->d2));

(*Sequence Control: do not send a new
nassage until all previous ones are
acknowledged. *)

V ip+ IP
(¥ ke N
k> ord(ip)
#> } ar « AR ar.msgno = k °
ar ->ip):

(* Contents of massages: send out a
nessage together with a serial number
as a unique id.

*)
V¢ ip + IP, d8 + DS
ip => ds #> ip.msg = ds.data *
ds.msgno = ord (ip);

Recsiver
(* Send acknowledgement for every mes-
sage received back to the Sender. *)
V dre DR } as* AS
‘rm> asg;

(*send back the serial number as an
acknowledgement of receipt. *)
¥ dr <« DR, as + AS
DR => as #> as.msgno =
dr .megno;

(* Accept those messages that never
coms before. *)
¥ dr « DR,
( 3 ep+ OP dr => op)
# “( % &r“+ DR
dp*=> dr *
dr’.magno= dr.magno);

$5.3.2 Verification of an Alternate-8it
Protocol i

We want to prove that the structure specifi-
cation of this Altermate-8it Protocol meets its
behavior specification. Since the DM (Data
Transmission Medium) is an unreliable one, the SS
(Send Station) has to send the messages unboundedly
to quarantee that at least ons will reach the RS
Receive Station) finally. However, since the AM
(Acknowledgenment Transmission Medium) is also an

anreliable one; it is possible that the acknowl-
edgemant may be lost, accerdingly. Fortunately,
it can be proved that if the SS sends the sare
messages unboundedly, though DM is unreliable,
unbounded messages will arrive at RS. Since RS
acknowledges all messages received, it is guar~
anteed that at least one acknowledgement will
arrive at SS.

Theorem 2. If the underlying communication medium
has a non-zerc probability of message trans-
mission, then if an unbounded number of
messages having the same contents are sent
from A, then not only one but an unbounded
number of messages will arrive at B.

Proof By mathematical induction: Since unbounded
nunber of messages having the same contents
are sent from IP, at least one of them, say
x, will reach OP. Since the number of mes-
sages after x is again unbounded, at least
one of them will arrive OP. The sams process
goes on and on.

Theorem 3."rh. Alternate-B8it Protocol makes an
unreliable system behave as a reliable one.

Proof Based on Theorem 2, the no loss property
is easy to prove. Other properties can be
proved one by one in a way similar to the
proofs in the tandem network.

See (CHES2] ioxr details of the formal speci-
fication and the verification of the
Alternate-Bit Protocol.

6., Comparisons with Other Current Aprroaches

6.1 Temporal Logic Approaches

Temporal logic, first introduced by Pnulin
as an adaption of a classical logic suitable for
defining the semantics of computer programs, is
used in specifying and verifying concurrent
systems {[OWISO].

Several properties of concurrent systems can
be stated using two temporal opersations: I
(nenceforth) and £ (eventually). However, global
invariants that should be true throughout tlie
computation, rather than mersly input/output rela-
tions, are stated as the behavior specification
of a distributed system. Though invariants facil-
itate implementation verification, they are 4iffi-
cult to specify, understand and are less intuitive
than input-cutput relations from the user's view-
point, as the behavior specification in EBS.

6.2 Trace Approaches

The notion of traces is used in the speci-~
fications and verifications of networks of
processes by Misra & Chandy [MIS8l], and Zhoa
Hoare (ZHOBl], There are several deficiencies in
the trace approach. PFirst, since notations for
sequences are used exclusively, trace speci-
fications are awkward in expressing properties




whose data structures arsc not well-defined se-
quences. Typical examples are those properties
of unreliable transmission systems that may lose,
duplicate and reorder messages. Second, the
“liveness" properties such as eventual deadlock,
or eventual tegmination, etc., are in general not
specified and verified using the trace notion
directly.

In comparison, events in EBS are only par-
tially ordered; no assumption of the existence
of a global clock is made. The concept of events
is more elementary than that of traces (seguences
of events); consequently, some properties that can
be specified in SBS easily can orly be expressed
in traces with difficulty. The "liveness” prop-
exrties can be specified directly by the enabling
relation => in EBS.

7. Conclusions

In summary, both the behavior and struc-
tural specifications based on event model are
{1) formal: using partial ordering relations
and first order predicate calculus; (2) minimal:
orthogonal properties are specified separately:;
(3) extensible: new requirements can be added
without changing the original specification; and
(4) complets: most interesting properties in
distributed systems can be specified.

The correctness of a design can be proved
before implementation by checking the consis-
tency between the behavior specification and
structurs specification of a system. Important
properties of concurrent systems including both
“safety” properties and "liveness" properties
can be specified and verified.

Moreover, since the specification technique
defines the orthcgonal properties of a system
separately, sach of them can be verified iade-
pendently. Thus, the proof technique avoids the
sxponential state-explosion problem found in
state-nmachine specification techniques.

In addition to having the most desirable fea-
tures of a specification techniquas, EBS represents
time concept by a partial ordering relation of
svents and represents concurrency by the lacking
of ordering between events. This makes EBS more
accurats a modsl for distributed systems, which
are inherently camcurrent, asynchronous, and non-
detezministic.
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